Nutrition and sustainable food production

Application of advanced nutritional concepts towards more sustainable animal production

Dr. John Htoo Director Global Technical Support (Swine) Evonik Nutrition & Care GmbH, Germany October 16, 2018

VIII CLANA-CONGRESSO LATINO-AMERICANO DE NUTRIÇÃO ANIMAL

> 16 a 18 de outubro de 2018 EXPO D. PEDRO - Campinas - SP - Brasil

Outline

- Challenges for commercial pig production
- How low can we go with reducing CP content in pig diets?
- Synergistic effect of low CP diet with probiotics
- Effect of reducing dietary CP content on feed cost
- Application of low CP diet to minimize environmental impact
- Dynamic AA ratio concept
- Take home message

Challenges for commercial pig production

Current challenges for commercial pig production

A growing demand for pork and other meat production

US department of Agriculture

Increased animal feed needs increased amount of arable land and water

POWER TO CREATE

Current planetary boundaries

Rockstroem et al. (2009)

Contribution from livestock production

- \circ N in manure can turn into NH₃
- \circ NH₃ emission » air pollution (PM2.5)
- Livestock: ~ 2/3 of NH₃ (GHG) from agriculture
- Pig production: 9.4% of total livestock GHG emissions (MacLeod et al., 2013)

Sustainability

- a new megatrend and a business imperative
- "meeting the needs of the present without compromising the ability of future generations to meet their own needs" (UN commission, 1989).
 - $_{\odot}$ ability to maintain a process or system

Third dimension in feed formulation

- Optimizing nutritional and economic aspects of feed formulation and feeding concepts
- Iow consideration for ecological, i.e. 3rd, aspect
- 3rd aspect most likely is going to change in most regions

Life Cycle Assessment (LCA)

- Process of assessing the environmental impact of products (protein sources or levels) in all stages of production, from cradle to grave (creation to disposal).
- LCA, e.g. can be conducted using GaBi software version 6 (PE INTERNATIONAL AG, 2012).
- Calculates global warming potential (GHG emission as CO₂e), eutrophication potential (EP as PO₄e) and the acidification potential (AP as SO₂e).

Consequences: increased regulation toward minimizing N/P pollution

With growing demand for food, it is necessary to reduce the global environmental footprint of food production.

GHG emission target (2020 vs. 1990)

- o EU: 20% reduction
- **Germany: 40%** (1,252 mil. ton CO_2e) New fertilizer ordinance (2017)
- France: 12% reduction from agri. GHG emissions (2028 vs. 1990)

Solutions to mitigate pollution

- Low CP-AA diets (minimize N output; improve efficiency)
- Increased use of alternative / local feedstuffs (insect meal, DDGS,...)
- o Genetic potentials (breeding)
- o Enzymes, probiotics, prebiotics, organic acids

How low can we go with reducing CP content in pig diets?

Not all crude protein and amino acids in ingredients are digestible

Crude Protein = N x 6.25

Animals need amino acids for body protein synthesis

- Protein synthesis is "all or nothing".
- Lys is the first limiting AA in typical pig diets (followed by Thr, Met and Trp, Val and Ile)

Source: Evonik review

Improving the efficiency of pig production towards sustainability

Factors affecting efficiency

- Over or under supply of nutrients (AA) in the diets
- Poor (gut) health or immune status / AGP-free feeding
- o ANFs (fiber)
- Stress (weaning, oxidative, heat)

Improving efficiency

- Integrated low CP-AA diets (synergy with pro- & pre-biotics)
- Rapids NIR analysis of nutrients
- Precision nutrition
- Dynamic AA concept

Reduction of dietary CP (6%-unit) on performance and N excretion in weaned pigs

Animals	120 pigs for growth trial (initial BW 6 kg; 28 d) 20 barrows for N-balance (initial BW 10.8 kg)
Treatments	5 CP levels (21, 19.5, 18, 16.5, 15%)
Diets	Corn, SBM, skim milk,Lys, Thr, Met, Trp, Val, Ile
Formulation	Same SID AA, ME and electrolyte balance

Toledo et al. (2014)

Reduction of dietary CP (4%-unit) on performance and ammonia emission in growing pigs

Animals	18 barrows for N-balance (initial BW 55 kg) 216 pigs for growth trial (initial BW 52 kg; 64 d)
Treatments	3 CP levels (16.5, 14.5, 12.5%)
Diets	Barley-wheat-SBM-Lys, Thr, Met, Trp
Formulation	Same SID AA and NE

Canh et al. (1998)

1%-point CP reduction results about 12% reduction in NH₃ emission.

Reduction of dietary CP (3%-unit) on performance of grower-finisher pigs (27-115 kg BW; 3 phases)

Reducing dietary CP did not compromise ADG and FCR of 6-28 kg pigs (Overview)

10 trial results (1998-2014); CP reduction: 2 to 7%-points

EVUIIK POWER TO CREATE

Reducing dietary CP did not compromise ADG and FCR of 20-72 kg pigs (Overview)

11 trial results (1998-2011); CP reduction: 2 to 6%-points

Reducing dietary CP did not compromise backfat and dressing % of finishing pigs

9 trial results (1995-2013); CP reduction: 2 to 4.5%-points

POWER TO CREATE

Amino acids deficiency reduced performance of 20-49 kg pigs (35-d)

CP, %*	NE, MJ/kg (kcal/kg)	Total Lys, %	4 EAA level	EAA added	Trp:Lys, %	Val:Lys, %	lle:Lys, %	Lys:CP, %
16.3	9.81 (2344)	0.79	Adeq.	-	20	89	78	4.8
12.2	9.92 (2370)	0.76	Adeq.	4	18	67	54	6.2
10.1	9.96 (2380)	0.73	Adeq.	4	15	59	44	7.2

* Lowering CP by replacing of SBM with free AA.

^{a,b} Sig. different (*P*<0.05)

Figueroa et al. (2002)

Effect of reducing dietary CP on growth of 12-22 kg pigs (21-d)

CP, % ¹	NE, MJ/kg	SID Lys,	EAA level	EAA added	NEAA added ²	EAA:NEAA	SID Lys:CP ³ ,	Elec. balance, mEq/kg
17.4	10.25	0.96	Adeq.	4	-	46:54	5.5 (6.2)	180
15.3	10.30	0.94	Adeq.	5	-	46:54	6.1 (6.7)	180
13.4	10.30	0.92	Adeq.	9	-	49:51	6.9 (7.4)	180
11.6	10.33	0.89	Adeq.	9	-	53:47	7.7 (8.2)	180
12.5	10.55	0.92	Adeq.	10	3	46:54	7.4 (7.8)	180
13.4	10.77	0.93	Adeq.	10	3	42:58	6.9 (7.3)	180

¹Diets 1-4: Grains-SBM-AA based; Diets 5-6: Grains-AA diets; ²Glu, Gly, Pro; ³Lys:CP in parenthesis.

	(Grains-SBM-f	Grain-free	AA diets		
CP, %	17.3	15.3	13.4	11.6	12.5	13.4
Final BW, kg	22.2 ^a	22.2 ^a	21.9 ^a	20.1 b	21.8 ^a	22.3 ^a
Feed intake, g/d	766	775	779	734	810	782
ADG, g/d	450 ^a	454 ^a	442 ^a	358 ^b	420 a	451 ^a
Gain:feed, g/g	0.59 ^a	0.59 ^a	0.57 ^a	0.49 ^b	0.52 b	0.58 ª

^{a,b} Within a row, values with different letters are different (P < 0.05).

Low CP diet is advantageous for pigs raised under hot climatic condition (68-95 kg pigs; 30-d)

CP, %	Ingredients*	Temp, °C	ME, MJ/kg	SID Lys, %	EAA level	EAA added	SID Lys:CP,	EB,** mEq/kg
16.2	Corn, SBM	19	13.6	0.75	Adeq.	2	4.6	158
13.7	Corn, SBM	19	13.6	0.75	Adeq.	4	5.5	158
16.2	Corn, SBM	31	13.6	0.75	Adeq.	2	4.6	158
13.7	Corn, SBM	31	13.6	0.75	Adeq.	4	5.5	158

*Contained 4.5% oil.

**Electrolyte balance = (Na + K - Cl); <u>SBM contains 2-2.2% of K</u>.

	Cool room, 19°C			Hot room, 31°C		
	16.2% CP	13.7% CP		16.2% CP	13.7% CP	
Feed intake, kg/d	2.771	2.874		2.362 ^b	2.594ª	
ADG, kg/d	0.970	0.981		0.838 ^b	0.945ª	
FCR, g/g	2.87	2.94		2.82	2.75	
Dressing, %	79.6	79.6	Ī	80.0	80.4	
Carcass lean, %	61.0	57.7		61.4	59.6	
Backfat, cm	1.34 ^b	1.82ª 🕇		1.36 ^b	1.60ª 🕇	

^{a,b} Within a row, values with different letters are different (P < 0.05).

Rodrigues et al. (2012)

Reasons for the inconsistent results with feeding pig low CP-AA diets and suggested solutions

Reasons

Diet formulation on the basis of total AA content

Deficiency of the next limiting AA (Val and Ile)

Deficiency of NEAA or N (> 5 %-pt CP)

DE or ME often lead to a greater backfat thickness

Solutions

Rapid analysis of ingredients (CP, AA) and convert to SID AA (AMINONIR; AMINODat 5.0)

Recommendations for SID AA and IP concept (AMINODat 5.0; NRC, 2012; Brazilian Table)

SID Lys:CP <**6.9%** (7.4% total Lys:CP) essential N:total N **48:100** (Heger et al. 1998)

NE based feed formulation Rapid analysis of energy (AMINONRG; Brazilian Table)

Essential AA:CP decreases with increasing CP in Soybeans → there is a trend of decreasing CP and increasing oil contents

POWER TO CREATE

NIR - AA to CP ratios: higher variation in Chinese soybean meal samples

AMINOInsight

Synergistic effect of low CP diet with probiotics to improve gut health

Proposed mechanism of low CP level as a means to control post-weaning diarrhea (PDW)

Lowering dietary CP reduces hindgut ammonia and biogenic amine concentration in piglets

Effect of diet CP content on ammonia and pH in cecum

Htoo et al. (2007)

Effect of diet CP content on cadaverine content in cecum

Luo et al. (2015)

Lowering dietary CP reduces hindgut ammonia concentration and diarrhea incidence in piglets

Reduction of dietary CP improved gut health (VH:CD) of weaned pigs challenged with E. coli K88

Synergy of LCP diet with a probiotic on ADG of *E. coli* challenged piglets (d 7-12 post-weaning)

CON = no additive; **AGP** = in-feed antibiotics; **PRO** = probiotics (*E. coli* strains)

Bhandari et al. (2010)

A low CP diet with probiotics had positive effects on diarrhea incidence and ADG of weaned pigs (d 0-21 post-weaning)

HPa = 20% CP+ antibiotic (*lincomycin* + *spectinomycin; Zoetis*)

HP = 20% CP without any additives

LPpb = 16% CP+ probiotic (*Bioplus 2B: B. subtilis and B. licheniformis*)

Garcia et al. (2014)

Effect of reducing dietary CP content on feed cost

Effect of reducing dietary protein on the cost of 9-15 kg piglet diets (Brazilian Table, 2017)

Ingredients, %	24.3% CP	23.1% CP	20.6% CP
Corn	40.98	44.75	52.60
Soybean meal	40.81	37.33	30.01
Whey powder	5.00	5.00	5.00
Wheat bran	5.00	5.00	5.00
Soybean oil	4.30	3.77	2.63
L-Lys.HCl	0.22	0.33	0.55
L-Thr	0.12	0.17	0.27
DL-Met	0.14	0.17	0.14
L-Trp	0.00	0.02	0.06
L-Val	0.00	0.00	0.12
Others ^a	3.43	3.46	3.55
NE (kcal/kg)	2486	2486	2486
CP, %	24.26	23.06	24.26
SID Lys, %	1.35	1.35	1.35
SID Met + Cys	0.74	0.74	0.74
SID Thr, %	0.90	0.90	0.90
SID Trp, %	0.26	0.26	0.26
SID Val, %	0.99	0.93	0.93
Cost (\$/MT) ^b	304.78	301.45	300.83
Saving (\$/MT)		3.33	3.95

Met requirements (Brazilian Table, 2017)

^a Includes di-Ca-phosphate, limestone, salt and minvit premix,.

^b Based on ingredients prices (Sep, 2018).

Effect of reducing dietary protein on the cost of 70-102 kg finisher pig diets (Vidal et al., 2010)

	Dietary CP, %					
Ingredients, %	17.95	16.45	14.95	13.45		
Corn	70.844	70.844	70.844	70.844		
Soybean meal	26.696	22.897	18.915	14.905		
Soy oil	0.263	0.263	0.263	0.263		
Corn starch	0.000	2.847	5.779	7.963		
Soy hulls	0.000	0.623	1.276	1.933		
L-Lys.HCI	0.00	0.120	0.246	0.372		
L-Thr	0.00	0.002	0.068	0.134		
DL-Met	0.00	0.009	0.054	0.099		
L-Trp	0.00	0.00	0.007	0.030		
L-Val	0.00	0.00	0.00	0.018		
Others ^a	2.197	2.395	2.550	3.355		
ME (kcal/kg)	3230	3230	3230	3230		
CP, %	17.95	16.45	14.95	13.45		
SID Lys, %	0.81	0.81	0.81	0.81		
SID Met + Cys	0.54	0.54	0.54	0.54		
SID Thr, %	0.60	0.60	0.60	0.60		
SID Trp, %	0.19	0.19	0.19	0.19		
SID Val, %	0.76	0.76	0.76	0.76		
Cost (\$/MT) ^b	209.91	205.95	204.57	205.45		
Saving (\$/MT)		3.96	5.34	4.46		

13.5 MJ/kg

^a Includes di-Ca-phosphate, limestone, salt and min-vit premix, inert and antibiotics.

^b Based in ingredients prices (FeedInfo; July 2018) and L-Val price of 5.9 US\$/kg.

Effect of reducing dietary CP level on income over feed cost and N excretion (70-102 kg pigs; Vidal et al. 2010)

	Dietary CP, %					
	17.95	16.45	14.95	13.45		
Performance						
Final BW, kg	102.1	102.0	104.7	101.4		
ADG, kg/d ^{NS}	1.05	1.04	1.12	1.02		
ADFI, kg/d ^{NS}	3.13	2.82	3.09	3.01		
FCR ^{NS}	3.01	2.72	2.76	2.99		
Carcass traits						
Carcass yield, % ^{NS}	69.59	70.19	69.57	70.25		
Lean meat, % ^{NS}	57.01	56.9	57.13	56.93		
Backfat, mm ^{NS}	14.24	13.5	13.37	13.78		
Feed cost/pig, \$ (70-100 kg)	22.22	17.85	19.54	19.22		
Feed cost/kg BW gain	0.63	0.56	0.56	0.61		
Pig (LW) value, \$ (70-102 kg)ª	27.20	27.08	29.42	26.59		
Income over feed cost/pig, \$	6.98	9.23	9.88	7.37		
N-balance						
N intake, kg/pig	2.77	2.28	2.28	2.01		
N excretion, kg/pig ^b	1.85	1.60	1.35	1.10		
N excretion, MT (1000 place ^c)	5.19	4.49	3.79	3.09		

^{NS} The effect of dietary CP level was not significant (P<0.05); ^a Pig prices (https://www.pig333.com/markets_and_prices/, 03.10.2018). ^B Based on 33% N retention in 80 kg pigs (Leek et al., 2005); 9%-pt less N output by 1% CP reduction; ^c 2.8 rotations/year.

Application of low CP diet to minimize environmental impact from pig production

Excess dietary of CP is the main cause for N pollution

- Partial replacing of protein sources with AA improves N utilization.
- Ammonia emission mainly originates from urinary N excretion.

Leek et al. (2005)

Effect of reducing CP on N-balance of 65-kg growing pigs

POWER TO CREA

Effect of dietary CP level on water consumption and urine excretion

Animals	8 growing pigs (46 kg BW); N-balance
Treatments	2 CP levels (25 or 18.5%)
Diets	Barley-SBM-4 AA
Formulation	Same AA and ME

POWER TO CREAT

Pfeiffer & Henkel (1991)

Reducing dietary CP increases N retention and reduces N excretion (11 to 88 kg initial BW)

Potential to decrease N excretion for pig production in <u>Brazil</u> (25 to 115 kg BW; 2017)

<u>Scenario:</u>	Diets:	Normal CP	Low CP	Low CP
BW: 25 to 115 kg		I vs. Thr.	Lvs. Thr. Met.	Lvs. Thr. Met.
Produced: 37 million pigs	Added AA:	Met	Trp	Trp, Val
(3.7 million MT pork)	Average CP. %:	15.6	14.5	13.3
Feeding: 3 phases				
Dietary CP: 15.6, 14.5, 13.3%	Total N excretion (thousand ton) ²	107	90	71
L L L	Reduction in Nexcretion (thousand ton)		16 (-15%)	35 (-33%)
	Reduction in slurry (million ton) ³		2.3	5.0
The start	Reduction in land for manure (thousand ha) ³		96	208

¹Assumed average FCR of 2.60 from 25-115 kg grow-out phase.

² Assumed N retained of 53% for normal CP diet; 1%-point CP reduction = 9% N output reduction.

³Based on 7.1 kg N/ton of pig slurry.

³Based on 170 kg N/ha (fertilizer ordinance, 2017).

Potential to decrease N excretion for pig production in <u>Mexico</u> (25 to 115 kg BW; 2017)

<u>Scenario:</u>	Diets:	Normal CP	Low CP	Low CP
BW: 25 to 115 kg		Lvs. Thr.	Lvs. Thr. Met.	Lvs. Thr. Met.
Produced: 13 million pigs	Added AA:	Met	Trp	Trp, Val
(1.3 million MT pork)	Average CP, %:	15.6	14.5	13.3
Feeding: 3 phases				0 7
Dietary CP: 15.6, 14.5, 13.3%	Iotal N excretion (thousand ton) ²	37	32	25
	Reduction in N excretion (thousand ton)		6 (-15%)	12 (-33%)
	Reduction in slurry (million ton) ³		0.8	1.8
	Reduction in land for manure (thousand ha) ³		34	73

¹Assumed average FCR of 2.60 from 25-115 kg grow-out phase.

² Assumed N retained of 53% for normal CP diet; 1%-point CP reduction = 9% N output reduction.

³Based on 7.1 kg N/ton of pig slurry.

³Based on 170 kg N/ha (fertilizer ordinance, 2017).

Precision feeding

- Use of feeding techniques providing the right amount of feed with the right nutrient composition to each pig in the herd on daily basis (Pomar et al., 2009).
- Precision feeding improves nutrient utilization and reduces N excretion

Performance of pigs in a 3-phase feeding (3P) or in daily-phase feeding programs provided individually to meet 110% (MP110),100% (MP100), 90% (MP90) or 80% (MP80) of the estimated nutritional requirements

		Treatments ¹				Sex			
	3P	MP110	MP100	MP90	MP80	Barrows	Gilts	RSD	P-value ²
Overall performance				_					
ADFI (kg/day)	2.44	2.43	2.53	2.57	2.33	2.69	2.26	0.33	0.52
ADG (kg/day)	1.05 ^a	1.05 ^a	1.03 ^a	1.00 ^{ab}	0.93 ^b	1.07	0.96	0.08	< 0.01
G : F (kg/kg)	0.43	0.43	0.41	0.39	0.40	0.40	0.42	0.01	0.05
Feeding costs (\$/pig)	80.5 ^a	74.8 ^{ab}	72.8 ^b	72.8 ^b	68.0 ^c	79.9	66.8	1.8	0.01
Adjusted feeding costs (¢/kg of weight gain)	89.7 ^a	84.4 ^b	84.6 ^b	84.8 ^b	86.3 ^{ab}	89.1	84.5	0.1	0.04

Effect of grain production location and feeding program on climate change of producing <u>**1 ton pigs**</u> (during growing-finishing) in South Brazil (Santa Catarina)

	Feeding program					
			Precision daily feeding			
	Conve feedi	ntional phase ng by group	By group	Individual pigs		
Climate change (kg CO ₂ -equiva	lence)					
SO-SO scenario		1840	1811	1783		
CW-SO scenario		2160	2079	2030		
CW-CW scenario	Ļ	2361	2300	2252		

SO-SO: SBM and corn produced in South Brazil;

CW-SO: SBM produced in Central-West and corn produced in South Brazil; Life-cycle assessment (SimaPro software (v. 8.0.3.14) CW-CW: SBM and corn produced in Central-West Brazil.

Andretta et al. (2018)

Dynamic AA ratio concept to increase efficiency

Immune challenged pigs need more SAA to support max. performance (53-95 kg)

- 64 individually housed barrows (6 wk trial)
- Split plot design [without or with ISS (E. coli LPS injection on Mon and Thu)]
- o 4 SID SAA:Lys ratios (0.45, 0.55, 0.65, 0.75)
- SID Lys: 0.81% (50-75 kg) and 0.74% (75-100 kg)

• Optimal SID SAA:Lys increased to 75% for growing pigs challenged with LPS.

Kim et al. (2012)

Poor sanitation increases dietary Trp:Lys ratio in weaned pigs

Le Floc'h et al. (2007)

Responses to increasing levels of Trp were greater in pigs with poor sanitary status.

Effect of fiber on optimum Thr:Lys ratio for 25 to 50 kg gilts

Effect of SID Thr:Lys on ADG of pigs fed low fiber diets

Effect of SID Thr:Lys on ADG of pigs fed high fiber diets

- Dietary fiber level affects Thr requirement of pigs.
- High Thr in pigs fed high fiber diets may be due to increased mucin production.

Take home message

Take home message

- CP level in pig diets can be reduced by at least 2 %-points without affecting performance and carcass quality when balanced AA on SID basis and NE.
- Formulation of low CP diets using supplemental AA allows to be cost effective and environmentally more sustainable.
- On average, 1%-unit dietary CP ↓ » ~ 9% ↓ N excretion
 » ~ 12% ↓ NH₃ emission
- Saving potential for reducing the dietary CP by 2 %-points for:
 - Brazil (37 million pigs): 35 thousand ton N output (33% reduction)
 - Mexico (13 million pigs): 12 thousand ton N output (33% reduction)
- Integrated approach of using low CP pig diets with probiotics further improves gut health and nutrient efficiency of pigs.
- Advanced concepts (precision feeding, low emission farming, dynamic AA ratio) help towards more sustainable pig production.

Thank you. John.htoo@evonik.com